[1]孙厚权,张其亮,吴 越,等.基于机器视觉的运动检测与超车策略的研究[J].计算机技术与发展,2019,29(08):53-57.[doi:10. 3969 / j. issn. 1673-629X. 2019. 08. 010]
 SUN Hou-quan,ZHANG Qi-liang,WU Yue,et al.Research on Motion Detection and Overtaking Strategy Based on Machine Vision[J].,2019,29(08):53-57.[doi:10. 3969 / j. issn. 1673-629X. 2019. 08. 010]
点击复制

基于机器视觉的运动检测与超车策略的研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
29
期数:
2019年08期
页码:
53-57
栏目:
智能、算法、系统工程
出版日期:
2019-08-10

文章信息/Info

Title:
Research on Motion Detection and Overtaking Strategy Based on Machine Vision
文章编号:
1673-629X(2019)08-0053-05
作者:
孙厚权1 ;?张其亮1 ;?吴 越2 ;?刘永良1 ;?孙 娜1
1. 江苏科技大学(张家港) 电气与信息工程学院,江苏 张家港 215600; 2. 江苏科技大学(张家港) 机电与动力工程学院,江苏 张家港 215600
Author(s):
SUN Hou-quan1 ;?ZHANG Qi-liang1 ;?WU Yue2 ;?LIU Yong-liang1 ;?SUN Na1
1. School of Electrical and Information Engineering,Jiangsu University of Science and Technology,Zhangjiagang 215600,China; 2. School of Mechatronic and Power Engineering,Jiangsu University of Science and Technology,Zhangjiagang 215600,China
关键词:
机器视觉;?智能车;?运动检测;?帧间差分;?超车策略
Keywords:
machine vision;?smart car;?motion detection;?interframe difference;?overtaking strategy
分类号:
TP31
DOI:
10. 3969 / j. issn. 1673-629X. 2019. 08. 010
摘要:
为了模拟实际生活中的超车方式,通过机器视觉完成超车行为的检测,文中提出一种基于机器视觉的检测方案—不使用超声波和无线模块,仅依靠对摄像头获取的图像进行计算分析,完成小车的自动循迹与超车。 首先采用优化的OTSU 算法求出采集到图像的最佳分割阈值,并利用此阈值对图像进行二值化;然后提取二值化图像中的赛道边缘与中线,并据此采用分段式 PID 进行方向控制,完成车辆的自动循迹;其次采用区域生长法检测出赛道中的前车图像,进而求得双车之间的距离,完成距离的检测与控制;最后使用优化的帧间差分法动态检测超车行为,完成整个超车过程。 通过与传统超车方式进行对比,验证了该方法在减少传感器模块使用的同时提高了环形赛道超车的成功率。
Abstract:
In order to simulate overtaking behavior in real life,the detection of overtaking behavior is completed by machine vision. We propose a solution based on machine vision to detect motion,without use of ultrasonic and wireless modules,only relying on calculating the images that cameras obtain to complete automatic tracking and overtaking of the car. Firstly,the optimized OTSU algorithm is used to find the best threshold of the captured image,and the binary image is made by using this threshold. Then the edge and middle of the track is extracted,and then segmented PID is used for the direction control to complete automatic tracking. Secondly,the region growing algorithm is used to detect the front car image in the track,and then the distance between the two vehicles is obtained for the distance detection and control. Finally,the optimized inter-frame difference method is used to dynamically detect the overtaking behavior and complete the whole process of overtaking. The effectiveness of this method is verified by comparing with the traditional way of overtaking.

相似文献/References:

[1]王明平 宋丽梅.基于计算机视觉的车架号采集系统[J].计算机技术与发展,2008,(04):239.
 WANG Ming-ping,SONG Li-mei.Vehicle Identify Number Acquisition System Based on Machine-Vision[J].,2008,(08):239.
[2]蒋恩松 肖辉军 孙刘杰 熊清廉.基于机器视觉的套印误差自动检测系统设计[J].计算机技术与发展,2008,(07):173.
 JIANG En-song,XIAO Hui-jun,SUN Liu-jie,et al.Design of Automatic Detecting Printing Registration Deviation System Based on Machine Vision[J].,2008,(08):173.
[3]张锦娟 师军 于佳丽 卢照.SpikeNet的研究及其在快速人脸识别中的应用[J].计算机技术与发展,2010,(07):235.
 ZHANG Jin-juan,SHI Jun,YU Jia-li,et al.Research on SpikeNet and Its Application in Quick Face Recognition[J].,2010,(08):235.
[4]方鹤鹤 冯宏伟 马煜.基于形态滤波和分水岭变换的边缘检测方法[J].计算机技术与发展,2006,(01):49.
 FANG He-he,FENG Hong-wei,MA Yu.Edge Detection Method Based on Morphology Filter and Watershed[J].,2006,(08):49.
[5]李雪晨 汪仁煌 艾星芳.改进的弯曲度算法在阶梯修剪检测中的应用[J].计算机技术与发展,2012,(03):166.
 LI Xue-chen,WANG Ren-huang,AI Xing-fang.Use of Improved Tortuosity Algorithm in Step Form Disfigurement Test[J].,2012,(08):166.
[6]赵立双 冯莹 曹毓.单目视觉定位中SURF算法参数的优化[J].计算机技术与发展,2012,(06):6.
 ZHAO Li-shuang,FENG Ying,CAO Yu.Optimization of SURF Parameters in Monocular Visual Odometry[J].,2012,(08):6.
[7]徐自越 李战明 李二超.OpenCV在焊缝实时检测与处理系统中的应用[J].计算机技术与发展,2012,(08):170.
 XU Zi-yue,LI Zhan-ming,LI Er-chao.Application of OpenCV on Real-time Detection and Processing System of Seam[J].,2012,(08):170.
[8]曾嘉炜 江永亨 陆耿 王京春 毕建权.一种基于视觉传感器的微缩智能车硬件架构设计[J].计算机技术与发展,2012,(11):5.
 ZENG Jia-wei,JIANG Yong-heng,LU Geng,et al.A Hardware Structure Design for Intelligent Micro-vehicles Based on Visual Sensors[J].,2012,(08):5.
[9]杨杰,卢盛林,赵晓芳.机器视觉在钢化玻璃缺陷检测中的应用研究[J].计算机技术与发展,2013,(03):211.
 YANG Jie,LU Sheng-lin,ZHAO Xiao-fang.Application and Research of Machine Vision in Tempered Glass Defect Inspection[J].,2013,(08):211.
[10]陈鹏宇[],孙文奇[],赵忠龙[]. 基于机器视觉的印刷质量检测研究[J].计算机技术与发展,2014,24(07):103.
 CHEN Peng-yu[],SUN Wen-qi[],ZHAO Zhong-long[]. rinting Quality Detection Based on Machine Vision[J].,2014,24(08):103.

更新日期/Last Update: 2019-08-10